Food restriction, refeeding, and gastric fill fail to affect emesis in musk shrews.

نویسندگان

  • Charles C Horn
  • Liz Still
  • Christiana Fitzgerald
  • Mark I Friedman
چکیده

Nausea and emesis are common side effects of gastrointestinal disease. Reports indicate that ghrelin and endocannabinoids, agents that stimulate appetite, also reduce emesis evoked by chemotherapy treatment, which suggests that stimulation of feeding inhibits the emetic system. In the following study we conducted a more direct test of this hypothesis by determining the impact of manipulating the motivation to eat on emesis, using food restriction and refeeding. Emesis was induced in musk shrews, a commonly used animal model for emesis research, using the cancer chemotherapy agent cisplatin (20 mg/kg ip), nicotine (2 mg/kg sc), or motion (1 Hz, horizontal, 4-cm displacement), because these treatments are known to target separate emetic pathways: gut vagal afferents, area postrema, and vestibular pathways, respectively. Twenty-four hours of food restriction was sufficient to stimulate food intake, and 1 h of refeeding filled the stomach. The results indicate that food restriction, refeeding, and gastric fill had no significant effects on the amount of emesis produced by any of the emetic treatments tested here. This suggests that, although activation of the emetic system might have prominent effects on food intake, neural controls for feeding behavior do not significantly affect the neural pathways for emesis. These results may have implications for how we treat patients who experience a constellation of side effects, including nausea and emesis, since stimulating appetite may not necessarily inhibit emetic pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mating behavior is controlled by acute changes in metabolic fuels.

Mild food restriction for 48 h inhibits mating behavior in female musk shrews (Suncus murinus). However, mating behavior is restored after a 90-min feeding bout. In this series of experiments, we examined the role of metabolic fuels in this behavioral restoration. First, drugs reported to block glycolysis or fatty acid oxidation were given 2 h before mating. Both treatments inhibited mating in ...

متن کامل

Delineation of vagal emetic pathways: intragastric copper sulfate-induced emesis and viral tract tracing in musk shrews.

Signals from the vestibular system, area postrema, and forebrain elicit nausea and vomiting, but gastrointestinal (GI) vagal afferent input arguably plays the most prominent role in defense against food poisoning. It is difficult to determine the contribution of GI vagal afferent input on emesis because various agents (e.g., chemotherapy) often act on multiple sensory pathways. Intragastric cop...

متن کامل

Immunization with a nontoxic mutant of staphylococcal enterotoxin A, SEAD227A, protects against enterotoxin-induced emesis in house musk shrews.

BACKGROUND Staphylococcal enterotoxins (SEs) are the most common cause of foodborne diseases and toxic shock throughout the world. However, no vaccine that prevents emesis induced by SEs has been described. METHODS A nontoxic mutant of SEA, SEAD227A, was constructed by site-directed mutagenesis and was purified by means of the Escherichia coli expression system. House musk shrews, a small eme...

متن کامل

Computerized detection and analysis of cancer chemotherapy-induced emesis in a small animal model, musk shrew.

Vomiting is a common side effect of cancer chemotherapy and many drug treatments and diseases. In animal studies, the measurement of vomiting usually requires direct observation, which is time consuming and often lacks temporal precision. Musk shrews have been used to study the neurobiology of emesis and have a rapid emetic episode (∼1 s for a sequence of retching and expulsion). The aim of the...

متن کامل

Behavioral Patterns Associated with Chemotherapy-Induced Emesis: A Potential Signature for Nausea in Musk Shrews

Nausea and vomiting are common symptoms in patients with many diseases, including cancer and its treatments. Although the neurological basis of vomiting is reasonably well known, an understanding of the physiology of nausea is lacking. The primary barrier to mechanistic research on the nausea system is the lack of an animal model. Indeed investigating the effects of anti-nausea drugs in pre-cli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 298 1  شماره 

صفحات  -

تاریخ انتشار 2010